A NOVEL ROUTE TO 5-FLUOROURACILS FROM CHLOROTRIFLUOROETHENE

Takamasa FUCHIKAMI,* Akiko YAMANOUCHI, and Yasuyuki SUZUKI Sagami Chemical Research Center,
Nishi-Ohnuma 4-4-1, Sagamihara, Kanagawa 229

Diethyl fluoromalonate was prepared in one-pot from chloro-trifluoroethene via trifluoroacrylic acid lithium salt in 79% yield. Diethyl fluoromalonate was easily converted to 5-fluoro-6-chlorouracils, reductions of which gave 5-fluorouracils in good yields.

Recently, remarkable attentions have been focused on fluorine-containing nucleic acids such as 5-fluoro- and 5-trifluoromethyluracils for their unique biological properties such as antitumour and/or antiherpes activities. $^{1)}$ In the course of our studies on functionalization of fluorine-containing olefins, $^{2)}$ we have already found and reported a convenient synthesis of 5-trifluoromethyluracils via 5-trifluoromethyl-5,6-dihydrouracils prepared by ureidocarbonylation of 2-bromo-3,3,3-trifluoropropene $^{3)}$ or by cyclization of α -trifluoromethylacrylic acid with ureas in acetic anhydride. $^{4)}$ On the other hands, preparation of 5-fluorouracils reported up-to-date are very dangerous because of explosiveness of fluorinating reagents $^{5)}$ or toxicity of starting materials such as fluoroacetamide $^{6)}$ or ethyl fluoroacetate. $^{7)}$ In this paper, we wish to report a convenient route to 5-fluorouracils starting from chlorotrifluoroethene.

It was reported that trifluoroacrylic acid $(\underline{1})$ is thermally unstable and a violent reaction normally occurred during product distillation with the simultaneous evolution of hydrogen fluoride, 8 however no detail analysis of the product

has been examined. We found that diethyl fluoromalonate ($\underline{2a}$) was formed in 54 to 65% yield, when $\underline{1}$ was heated in ethanol in the presence of base such as triethylamine, sodium ethoxide or lithium hydroxide. A similar reaction of $\underline{1}$ with sodium methoxide in methanol afforded dimethyl fluoromalonate ($\underline{2b}$) in 34%. Compound $\underline{2a}$ was successfully synthesized in one-pot via trifluoroacrylic acid lithium salt prepared from chlorotrifluoroethene, buthyllithium and carbon dioxide, 10) followed by heating in added ethanol in 79%. Diethyl fluoromalonate reacted with substituted ureas such as methylurea, 1,3-dimethylurea or benzylurea in the presence of sodium methoxide in ethanol under similar conditions employed with unsubstituted urea 9 , 11) to give N-substituted 5-fluorobarbituric acids ($\underline{3b}$ - \underline{d}), while we failed to obtain the desired product in the reaction with phenylurea.

When 5-fluorobarbituric acid $(\underline{3a})$ was heated with excess of phosphorus oxychloride in the presence of 2 equiv. of dimethylaniline at 100 °C for 10 min, 5-fluoro-6-chlorouracil $(\underline{4a})$ was obtained in 46% yield. Similar reactions of $\underline{3b}$ and $\underline{3c}$ gave the corresponding 5-fluoro-6-chlorouracils $(\underline{4b})$ and $\underline{4c}$ in 58 and 61% yields, respectively. It is of interest to note that 3-substituted isomers were exclusively formed in these reactions. Though our attempt to obtain 1,3-disubstituted 5-fluoro-6-chlorouracil from 1,3-dimethyl-5-fluorobarbituric acid $(\underline{3d})$ was

$$\begin{array}{c} \text{NaOMe} \\ \text{EtOH} \\ \end{array} \begin{array}{c} \text{NaOMe} \\ \text{EtOH} \\ \end{array} \begin{array}{c} \text{R}^2 \text{N} \\ \text{N} \\ \text{O} \\ \text{N} \\ \text{O} \\ \end{array} \begin{array}{c} 3a\colon R^1 = R^2 = H \\ \text{D} \colon R^1 = H, R^2 = Me \end{array} \begin{array}{c} (97\$) \\ \text{D} \colon R^1 = H, R^2 = Me \end{array} \begin{array}{c} (73\$) \\ \text{C} \colon R^1 = H, R^2 = CH_2 Ph \end{array} \begin{array}{c} (52\$) \\ \text{D} \colon R^1 = R^2 = Me \end{array} \begin{array}{c} (38\$) \\ \text{D} \colon R^1 = R^2 = H \end{array} \begin{array}{c} (46\$) \\ \text{D} \colon R^1 = H, R^2 = Me \end{array} \begin{array}{c} (46\$) \\ \text{D} \colon R^1 = H, R^2 = Me \end{array} \begin{array}{c} (46\$) \\ \text{D} \colon R^1 = H, R^2 = Me \end{array} \begin{array}{c} (28\$) \\ \text{D} \colon R^1 = H, R^2 = Me \end{array} \begin{array}{c} (28\$) \\ \text{C} \colon R^1 = H, R^2 = CH_2 Ph \end{array} \begin{array}{c} (61\$) \\ \text{D} \colon R^1 = H, R^2 = CH_2 Ph \end{array} \begin{array}{c} (61\$) \\ \text{D} \colon R^1 = Me, R^2 = CH_2 Ph \end{array} \begin{array}{c} (61\$) \\ \text{D} \colon R^1 = Me, R^2 = CH_2 Ph \end{array} \begin{array}{c} (61\$) \\ \text{D} \colon R^1 = Me, R^2 = CH_2 Ph \end{array} \begin{array}{c} (61\$) \\ \text{D} \colon R^1 = Me, R^2 = CH_2 Ph \end{array} \begin{array}{c} (61\$) \\ \text{D} \colon R^1 = Me, R^2 = CH_2 Ph \end{array} \begin{array}{c} (61\$) \\ \text{D} \colon R^1 = Me, R^2 = CH_2 Ph \end{array} \begin{array}{c} (61\$) \\ \text{D} \colon R^1 = Me, R^2 = CH_2 Ph \end{array} \begin{array}{c} (61\$) \\ \text{D} \colon R^1 = Me, R^2 = CH_2 Ph \end{array} \begin{array}{c} (61\$) \\ \text{D} \colon R^1 = Me, R^2 = CH_2 Ph \end{array} \begin{array}{c} (61\$) \\ \text{D} \colon R^1 = Me, R^2 = CH_2 Ph \end{array} \begin{array}{c} (61\$) \\ \text{D} \colon R^1 = Me, R^2 = CH_2 Ph \end{array} \begin{array}{c} (61\$) \\ \text{D} \colon R^1 = Me, R^2 = CH_2 Ph \end{array} \begin{array}{c} (61\$) \\ \text{D} \colon R^1 = Me, R^2 = CH_2 Ph \end{array} \begin{array}{c} (61\$) \\ \text{D} \colon R^1 = Me \end{array} \begin{array}{c} (61\$) \\$$

unsuccessful under the same reaction conditions, we were able to synthesized 1,3-disubstituted derivative, 1-methyl-3-benzyl-5-fluoro-6-chlorouracil ($\underline{4d}$), by methylation of $\underline{4c}$ with methyl iodide in 79%.

Hydrogenolysis of $\underline{4a}$ catalyzed by palladium on carbon in 1 M sodium hydroxide solution under atmosphilic pressure of hydrogen at room temperature gave 5-fluorouracil selectively, though long period of reaction time or use of large amounts of catalyst afforded uracil as main product. In a similar way, the reduction of N-substituted derivatives ($\underline{4b}$ - \underline{d}) to 5-fluorouracils ($\underline{5b}$ - \underline{d}) was carried out in 1 M sodium hydroxide solution or in ethanol or ethanol-tetrahydrofuran (THF) in the presence of equimolar amount of triethylamine in 87 to 99% yields. The conversion of 5-fluoro-6-chlorouracils ($\underline{4}$) to 5-fluorouracils ($\underline{5}$) was also performed by zinc reduction. Thus, heating of $\underline{4a}$ with zinc powder in acetic acid at 100 °C for 5 h gave $\underline{5a}$ in 91%.

It is so difficult in general to introduce a substituent selectively at the desired position, especially at 3-position, of uracil or 5-fluorouracil that this method may make offer a new methodology not only for safety preparation of 5-

Table 1.	Reduction	of	5-fluoro-6-chlorouracils	$(\underline{4})$
----------	-----------	----	--------------------------	-------------------

R ¹	R ²	Method ^{a)} (Pd/C x10 ⁻² equi	Solvent(base)	Time h	Product (Yield/%)
Н	Н	A	3.9	1 M NaOH aq.	4	<u>5a</u> (73)
Н	Н	A	10.0	1 M NaOH aq.	4	b)
Н	Н	В	3.5	EtOH (Et ₃ N)	3	<u>5a</u> (84)
Н	Н	С		AcOH	5	<u>5a</u> (91)
Н	Me	Α	3.7	1 M NaOH aq.	4	<u>5b</u> (91)
Н	CH ₂ Ph	А	5.6	1 M NaOH aq.	4	<u>5c</u> (87)
Me	CH ₂ Ph	В	6.1	EtOH-THF (Et3N)	9	<u>5d</u> (99)
Me	CH ₂ Ph	В	6.1	THF (Et ₃ N)	3.5	c)

a) Method A: Reactions were run with $\underline{4}$ (0.25 mmol) and Pd/C in 2.5 ml of 1 M sodium hydroxide solution under atmosphilic pressure of hydrogen at room temperature. Method B: Reactions were run with $\underline{4}$ (0.25 mmol), triethylamine (0.25 mmol) and Pd/C in ethanol (1 ml) or ethanol(1 ml)-THF(1 ml) under atmosphilic pressure of hydrogen at room temperature. Method C: Reaction was run with $\underline{4}$ (0.4 mmol) and zinc powder (1.5 mg-atom) in 2 ml of acetic acid at 100 °C. b) Uracil was obtained in 80% yield. c) No reaction was occurred and starting $\underline{4d}$ was recovered unchanged quantitatively.

fluorouracils but also for development of novel physiological active fluorine-containing nucleic acids. Further studies on the application of this reaction are now underway.

References

- 1) For example, R. Filler and Y. Kobayashi, "Biomedical Aspects of Fluorine Chemistry," Elsevier Biomedical Press, Amsterdam (1982).
- 2) T. Fuchikami, M. Yatabe, and I. Ojima, Synthesis, <u>1981</u>, 365; I. Ojima, M. Yatabe, and T. Fuchikami, J. Org. Chem., <u>47</u>, 2051 (1982); T. Fuchikami and I. Ojima, J. Am. Chem. Soc., <u>104</u>, 3527 (1982); T. Fuchikami, K. Ohishi, and I. Ojima, J. Org. Chem., <u>48</u>, 3803 (1983); I. Ojima, T. Fuchikami, and M. Yatabe, J. Organomet. Chem., <u>260</u>, 335 (1984).
- 3) T. Fuchikami and I. Ojima, Tetrahedron Lett., 23, 4099 (1982).
- 4) T. Fuchikami and A. Yamanouchi, and I. Ojima, Synthesis, in press.
- 5) For example, D. H. H. Barton, R. H. Hesse, H. T. Toh, and M. M. Pechet, J. Org. Chem., <u>37</u>, 329 (1972); P. D. Schumann, P. Tarrant, D. A. Warner, and G. Westmoreland, Canadian Patent, 985681 (1976): Chem. Abstr., <u>85</u>, 46738e (1976); S. Misaki and Y. Furutaka, Japan Kokai, 149287 (1976): Chem Abstr., 87, 135378w (1977).
- 6) W. K. Chung, J. H. Chung, and K. A. Watanabe, J. Heterocycl. Chem., <u>20</u>, 457 (1983).
- 7) R. Duschinsky, E. Pleven, and C. Heidelberger, J. Am. Chem. Soc., <u>79</u>, 4559 (1957).
- 8) F. G. Draksmith, R. D. Richardson, O. J. Stewart, and P. Tarrant, J. Org. Chem., <u>33</u>, 286 (1968).
- 9) N. Ishikawa and A. Takaoka, Chem. Lett., <u>1981</u>, 107, and references cited therein.
- 10) R. Sauvetre, D. Masure, C. Chuit, and J. F. Normant, C. R. Acad. Sci., <u>288</u>, 335 (1979).
- 11) E. D. Bergmann, S. Cohen, and I. Shahak, J. Chem. Soc., 1959, 3286.
- 12) German patent¹³⁾ has claimed that the reaction of 5-fluorobarbituric acids with phosphorous oxycloride in the presence of water gave 5-fluoro-6-chlorouracils, however we could obtain no or little desired product under the same reaction conditions.
- 13) K. K. Gauri, Ger., 1232153 (1967): Chem. Abstr., <u>66</u>, 95080a (1967).
- 14) 5-Fluorouracil has been reported to undergo hydrogenolysis catalyzed by palladium on carbon in sodium hydroxide to give uracil.⁷⁾

(Received June 13,1984)